Joint Diagonalization of Several Scatter Matrices for ICA
نویسندگان
چکیده
Procedures such as FOBI that jointly diagonalize two matrices with the independence property have a long tradition in ICA. These procedures have well-known statistical properties, for example they are prone to failure if the sources have multiple identical values on the diagonal. In this paper we suggest to diagonalize jointly k ≥ 2 scatter matrices having the independence property. For the joint diagonalization we suggest a novel algorithm which finds the correct direction in an deflation based manner, one after another. The method is demonstrated in a small simulation study.
منابع مشابه
Least Square Joint Diagonalization of Matrices under an Intrinsic Scale Constraint
We present a new algorithm for approximate joint diagonalization of several symmetric matrices. While it is based on the classical least squares criterion, a novel intrinsic scale constraint leads to a simple and easily parallelizable algorithm, called LSDIC (Least squares Diagonalization under an Intrinsic Constraint). Numerical simulations show that the algorithm behaves well as compared to o...
متن کاملA Novel Non-orthogonal Joint Diagonalization Cost Function for ICA
We present a new scale-invariant cost function for non-orthogonal joint-diagonalization of a set of symmetric matrices with application to Independent Component Analysis (ICA). We derive two gradient minimization schemes to minimize this cost function. We also consider their performance in the context of an ICA algorithm based on non-orthogonal joint diagonalization.
متن کاملSome Gradient Based Joint Diagonalization Methods for ICA
We present a set of gradient based orthogonal and nonorthogonal matrix joint diagonalization algorithms. Our approach is to use the geometry of matrix Lie groups to develop continuous-time flows for joint diagonalization and derive their discretized versions. We employ the developed methods to construct a class of Independent Component Analysis (ICA) algorithms based on non-orthogonal joint dia...
متن کاملSimple LU and QR Based Non-orthogonal Matrix Joint Diagonalization
A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...
متن کاملBlind Separation of Cyclostationary Sources Using Joint Block Approximate Diagonalization
This paper introduces an extension of an earlier method of the author for separating stationary sources, based on the joint approximated diagonalization of interspectral matrices, to the case of cyclostationary sources, to take advantage of their cyclostationarity. the proposed method is based on the joint block approximate diagonlization of cyclic interspectral density. An algorithm for this d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012